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ABSTRACT

Diffusive eddy closure theory for estimating the poleward heat flux is reexamined and tested in the context
of a two-layer homogeneous model. Consideration of the inverse energy cascade induced by baroclinic turbulence
on the b plane leads to an expression for diffusivity in terms of the kinetic energy dissipation and the b effect.
A key step in the closure is the identification of this diffusivity with that for potential vorticity in the lower of
the two layers in the model. This assumption is then combined with an exact expression relating the diffusivity
to the baroclinic energy generation and the mean vertical shear. The theory is closed by identifying the kinetic
energy dissipation entering the inverse cascade argument with the baroclinic energy production. It is found that
the first constraint in isolation based on inverse cascade arguments between the diffusivity of lower-layer potential
vorticity and the kinetic energy dissipation is robust and accurate, whereas the final theory relating diffusivity
to vertical shear remains useful but has somewhat degraded accuracy and is more sensitive to model parameters,
such as numerical resolution and small-scale dissipation. In the limit of large supercriticality, this theory reduces
to that of Held and Larichev. However, it is much more accurate in reproducing numerical results from a two-
layer homogeneous model on a b plane for the moderate supercriticalities that are typical of model atmospheres.
The problems involved in generalizing this result to models with more layers on the vertical or with a continuous
stratification are discussed.

1. Introduction

The theory for baroclinic eddy heat fluxes attributed
to Held and Larichev (1996, hereafter HL) can be recast
in a form in which one simultaneously satisfies two
constraints between the eddy diffusivity and the rate of
baroclinic energy production. The first of these con-
straints arises from the assumption that the energy-con-
taining eddies stem from an inverse energy cascade that
is halted by the b effect, as discussed originally by
Rhines (1975). From this assumption, one can relate the
eddy length and velocity scales to «d, the rate per unit
of mass at which kinetic energy is flowing through the
inverse cascade and being dissipated at large horizontal
scales by surface friction. From these length and ve-
locity scales, one can estimate a diffusivity from their
product:

3/5 24/5D } « b .d (1)

This is the unique way of constructing a kinematic dif-
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fusivity, given only «d and b, and this scaling underlies
the theory of HL [see their Eqs. (26) and (32)]. Among
others, Maltrud and Vallis (1991), Panetta (1993), Spall
(2000), and Danilov and Gurarie (2002) evaluate aspects
of the predictions of eddy length and velocity scales
following the Rhines argument. Smith et al. (2002) dis-
cuss scaling arguments of this type for the diffusion of
a passive tracer by two-dimensional turbulence.

The second half of the theory of HL consists in re-
lating «d with the production of available potential en-
ergy. In a quasigeostrophic system in which baroclinic
production is the only significant eddy source, eddy en-
ergy is created through downgradient eddy heat fluxes
and is typically dissipated at large scales through friction
(vertical turbulent diffusion in surface boundary layers).
In the Boussinesq approximation, for example, the baro-
clinic production is

]B /]y
« 5 2 y9b9 . (2)p [ ]]B /]z

Here, the climate is assumed to be zonally symmetric,
B is the zonal mean buoyancy, is the eddy hori-y9b9
zontal buoyancy flux, and the brackets denote an av-



2908 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

erage over latitude and height. If small-scale dissipation
is negligible, the production of available potential en-
ergy is equal to the energy dissipation at large scales.

To close the theory, one needs to relate the buoyancy
flux to the diffusivity in (1). In the two-layer model of
HL, one will obtain different answers, in general, if one
chooses to diffuse buoyancy, lower-layer potential vor-
ticity, or upper-layer potential vorticity with the value
of the diffusivity set by (1). However, in the limit of
strong supercriticality, in which the vertical shear is
much larger than the minimum shear required for in-
stability, the distinction between diffusing buoyancy and
potential vorticity disappears in this two-layer model.
We return to this point below as it is a key ingredient
in the modification proposed here to the theory of HL.
Putting this question aside for the moment, and setting

5 2D]B/]y, we writey9b9

2(]B /]y) D
« 5 D 5 , (3)p 2[ ] [ ]]B /]z T

where T 21 is an inverse timescale proportional to the
local Eady growth rate f Ri21/2. If one can now replace
D and T with appropriately weighted global means,
equate the resulting value of D with that in (1), and
equate «p and «d, one obtains the result in HL:

1
D } . (4)

2 3b T

Recently, Barry et al. (2002) have examined the scal-
ing properties of the eddy heat transport for a set of
general circulation experiments by varying external pa-
rameters, and their results support the connection be-
tween diffusivity and « in the more realistic context of
atmospheric general circulation models. However, they
argue that their results are not well fit by (4), although
it is implicit that (1) is well satisfied. There are several
reasons why the theory of HL might break down when
applied to comprehensive GCMs. Some of these can
be addressed in the context of dry quasigeostrophic
dynamics, and others relate especially to the extra com-
plexities introduced by moisture. This paper is devoted
to some of the dry quasigeostrophic issues. In partic-
ular we reexamine the dry two-layer, homogeneous
model of HL and test the different parts of the theory
that leads to (4). We provide a modified heuristic theory
that fits the numerical results much more closely. This
modified theory is of particular relevance when the
supercriticality of the flow is relatively weak. In the
process we make connections with some results of Pa-
van and Held (1996) for horizontally inhomogeneous
quasigeostrophic flows. The impact of moist thermo-
dynamics on these issues will be addressed in a further
study.

Through the different sections of this paper, we dis-
cuss and assess the different steps leading to (4). We
use the numerical setting of a two-layer model but be-
lieve that similar issues arise in other models. Indeed,

we briefly refer to the three-layer model of Held and
O’Brien (1992) to help make this point. The numerical
model is presented in the appendix. In section 2, we
examine the arguments leading to (1) and test its ac-
curacy. In section 3, we discuss the relation between
the energy production and dissipation and also how to
relate our present theory to the results of Barry et al.
(2002).

2. Relation between diffusivity and cascading
eddies

a. Inverse cascade scalings

The relation (1) is tightly linked to the properties of
the barotropic inverse cascade of energy on the b plane.
Given assumptions about this inverse cascade, several
relations exist between the characteristic eddy velocity
scale V and length scale . The first of these assumes21k 0

that there exists an inertial range with the universal
C k25/3 form. This assumption means that the cascade2/3«d

is localized in the spectral sense. From this, just as in
the case of the inertial range in three-dimensional tur-
bulence, one can relate the rate at which energy is flow-
ing through the inverse cascade to V and k0:

3« } V k .d 0 (5)

Here, «d is the dissipation of barotropic energy by the
large-scale drag. See, for example, Smith and Vallis
(2002) for a discussion of this relation in the two-di-
mensional context.

We can use this relation to define a length scale 21kB

such that

3k 5 « /V .B d (6)

The second assumption is that the eddies are char-
acterized by the Rhines scale , that is,21kR

1/2k 5 (b/V) ,R (7)

where V is the rms velocity. Rhines (1975; see also
Panetta 1993) introduced this scale to predict the stop-
ping scale of b-plane turbulence. However, as noted
originally by Rhines and as discussed by Danilov and
Gurarie (2002) and Smith et al. (2002), the b effect
alone cannot arrest the cascade completely; less efficient
energy transfer to zonal flows of larger and larger me-
ridional scale continues until arrested by frictional drag.
If we want to identify V and kR with scales relevant for
meridional mixing, we need to assume that it is the point
of transition from a more or less isotropic cascade to
the anisotropic interaction with jets that is the deter-
mining characteristic of the flow, and not the larger jet
scales that evolve if the damping is weak enough. See
Smith et al. (2002) for support for this picture.

One can introduce another scale involving b and «d:

3/5 21/5k 5 b « .b d (8)

If kB and kR are proportional to each other, then they
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are also proportional to kb. Also, assuming that «d and
b are the only relevant quantities and by a dimensional
analysis, one finds that the three scales are proportional.
Vallis and Maltrud (1993) argue that (8) has advantages
over (7) in predicting the stopping scale for barotropic
turbulence as it is a Galilean invariant. However, the
advantage of (7) is that it gives information on the en-
ergy content of the flow. This can be seen in the context
of 2D turbulence when one varies bottom drag keeping
fixed « (see, e.g., Smith et al. 2002).

Assuming that the eddy scales (6), (7), and (8) are
the same, one obtains immediately a characteristic dif-
fusivity V defined by (1). The differences between21k 0

these scales can be examined in Fig. 1. This figure shows
results from our 2562 and 10242 simulations (see the
appendix) and results from the experiments of HL, as
a function of supercriticality j (shear divided by the
critical shear required for inviscid instability). For clar-
ity, the scales have been multiplied by appropriate con-
stants so that they equal the Rhines scale at j 5 4.21kR

Also, «d was evaluated as the dissipation of barotropic
energy by Ekman friction. One can see that the different
scales match each other for j , 5. For strongly super-
critical flows (j . 5), the two Rhines scales kR and kb

remain very similar, but kB strongly overestimates the
other scales in the HL experiments and underestimates
them in our 10242 runs. The actual relationship between
these scales could involve the properties of the inverse
cascade, such as the presence of inertial range and the
effect of large-scale dissipation. The equality between
kR and kb contrasts with the one-layer b-plane case stud-
ied by Vallis and Maltrud (1993), who found important
differences between these scales. In the present model,
we can understand the similarity between kR and kb as
follows. If one assumes

xk /k 5 j ,R B

one finds

2x/5k /k 5 j .R b

Thus, even if one finds a large difference between kR

and kB, the difference between the two Rhines scales kR

and kb will remain small.
To assess further if a theory for eddy scales can be

expressed only in terms of «d and b, we can examine
how the velocity scale V scales as a function of «d and
b. From kR 5 kb, one would have

21/5 2/5V } b « .d (9)

As can be seen in Fig. 1d, this works indeed very well
for all of the experiments, even when kB departs from
kb. Assuming as before that kR/kB 5 j x, we find

2/5 21/5 2x/5V 5 « b j .d

This relation shows that the velocity scaling is only
weakly sensitive to the departure of kB from kb. Such
a departure is expected to occur if the model does not

produce the Kolmogorov spectral shape, that is, if it
does not have a well-defined inverse energy cascade.

The barotropic energy spectra from our two-layer
model are presented on Fig. 2. The spectra are steeper
than k25/3. This is presumably related to the fact that
the barotropic energy production (i.e., the baroclinic to
barotropic energy transfer) is not localized in spectral
space but is distributed over a wide range of scales, as
was shown by HL. It could also result from nonlocality
of energy transfers, and/or large-scale anisotropic struc-
tures (e.g., zonal jets). This helps explain why kB be-
haves differently from the other scales.

These spectra help one to understand some important
differences between the different sets of simulations. In
our 2562 case, the friction is not large enough to prevent
the inverse cascade from reaching the largest scale when
the supercriticality is large. So the barotropic kinetic
energy peaks at the domain scale (see Fig. 2a). Because
of this piling up of energy at the domain scale, the eddies
are more energetic than predicted: ) increas-21/5 2/5V/(b «d

es as j increases (see inset in Fig. 1d). On the other
hand, in the 10242 case, bottom friction is large enough
that the stopping scale is not set anymore by b alone:
as can be seen in Fig. 2b, the eddy length scale is no
longer set by the Rhines scale. Both b and drag are
important in this case. Presumably, the velocity scale
is no longer set by «d and b and should also depend
on friction. This behavior is consistent with the phys-
ical fields as we find that the eddies are almost isotropic
in this case (implying that b is not the essential pa-
rameter). As a result, the energy-containing eddies
have less energy for a given energy generation rate
than predicted: ) decreases as j increases21/5 2/5V/(b «d

(inset in Fig. 1d). These results show that, for a given
barotropic energy injection rate, the energy of the ed-
dies may vary substantially, depending on the effi-
ciency of the drag in arresting the cascade. Danilov
and Gurarie (2001) show that for barotropic f -plane
turbulence, large-scale drag can be responsible for non-
universal properties of the inverse cascade. Here, an-
other source of nonuniversality is the broad distribution
of the barotropic energy generation. In consequence,
the precise equality of all three scales defined above
may be difficult to realize.

b. Diffusivity scaling

Introducing a mixing scale such that21kd

k 5 V/D,d (10)

and equating it with kb and kR, we obtain
24/5 3/5D 5 cb « .d (11)

We could also derive this relation from D 5 V , using21k 0

the length scale k0 5 kb and the velocity scale defined
by (9).

One now needs to equate the diffusivity D either with
the diffusivity of buoyancy Db 5 2[y9b9]/]yB or of
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FIG. 1. The length scales (kbl)21 (circles), (kRl)21 (plus symbols), (kBl)21 (crosses), as defined in (6)–(8),
plotted as a function of supercriticality j for the three experiments (a) 2562 runs, (b) 2562 HL runs, and (c) 10242

runs. The scales have been multiplied by appropriate constants so that they equal the Rhines scale at j 5 4. (d)
Barotropic rms velocity as a function of prediction b21/5. Inset corresponds to the ratio of barotropic velocity2/5«d

and prediction as a function of j.

upper-/lower-layer potential vorticity (PV; i.e., D1 5
2[y9q9]1/]yQ1 and D2 5 2[y9q9]2/]yQ2). In the two-
layer model, the potential vorticity flux integrates to zero
over the domain:

H [y9q9] 5 0.O k k
k

Here, k 5 1 refers to the upper layer, k 5 2 to the lower
layer, Hk is the mean depth of the layer, and [y9q9]k is
the poleward eddy PV flux. Brackets now refer to a
horizontal average. The uniform PV flux in the upper
layer is equal and opposite to the uniform PV flux in
the lower layer. The mean PV gradients are ]yQ1 5 b(1
1 j ) in the upper layer and ]yQ2 5 b(1 2 j ) in the
lower layer. In this model the ratio of the diffusivities
in the two layers is constrained by the ratio of the mean
PV gradients (Vallis 1988):

D j 2 11 5 .
D j 1 12

Held and Larichev (1996) considered the limit of j
→ `, in which case the PV gradients in either layer are
equal to the horizontal buoyancy gradient, to within a
constant, and we do not need to choose between dif-
fusing PV or buoyancy. The question is how best to
proceed for general values of j. Our proposal is not
based on a fully coherent theory, but given the very
good fit that we obtain with numerical results, we be-
lieve that the assumptions resulting in this theory de-
serve close scrutiny. Here our choice is to use the lower-
layer diffusivity as our best guess; that is,

[y9q9]2D } D 5 .2 b(j 2 1)
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FIG. 2. Spectra of barotropic kinetic energy for different values of supercriticality (a) for our 256 2 simulations
and (b) for our 10242 simulations. The upper curves correspond to larger supercriticality. The stars correspond to
the Rhines scale kR 5 (b/2V )1/2, where V is the barotropic velocity rms. The figure insets are the compensated
energy spectra (i.e., multiplied by k25/3). The circles still correspond to kR.

As discussed in numerous studies (see, e.g., Tréguier et
al. 1997; Marshall et al. 1999), it seems more appro-
priate to diffuse a quantity conserved following the geo-
strophic flow (when adiabatic and inviscid), such as PV
rather than buoyancy. The choice of the vertical level
to use for diffusing PV is less clear cut. In the two-layer
model, in the presence of the b effect, typical eddy phase
speeds are such that U 2 c is smaller in the lower than
the upper layer, so the lower layer more nearly serves
as the steering level for these eddies. As a result, me-
ridional particle displacements are larger for a given
streamfunction perturbation in the lower layer, and the
eddies can be expected to mix PV more efficiently. The
upper layer is characterized by coherent zonal jets in
which large values of U 2 c and PV gradients tend to
restrict the large-scale meridional transport. The lower
layer flow creates mixing that is more plausibly de-
scribed by simple diffusion.

Using the lower-layer PV diffusivity for D in (1) does
work quite well for all the simulations, as can be seen
on Fig. 3. Actual and predicted diffusivities have been
nondimensioned by Ul, where l is the deformation ra-
dius, and we multiplied each set of predictions by a
constant chosen to best fit with the numerical results.
The value of the constant is provided in the caption. As
evident in the figure, there is a clear range of values
where this scaling for the lower-layer diffusivity works
quite well, and this agreement is improved for the 10242

simulations. The fact that this theory works so well may
be partly due to the fact that, if there is some departure
from the scaling expected for a pure inertial range, that
is, kR/kB 5 j x, this gives a diffusivity D ø b24/5 j 3x/5.3/5«d

Thus, there is a rather weak dependence on discrep-
ancies of this type in the length scales.

We have also observed that the result is not very

sensitive to the exact definition of «. In the above we
have used the energy lost to surface friction from the
barotropic mode, but an equally good fit is obtained if
one uses the total energy dissipation by surface friction
(in the baroclinic as well as the barotropic mode). Re-
placing «d with the energy production «p, which bal-
ances energy lost through both large-scale drag and
small-scale mixing, does not alter the fit either (not
shown). The 3/5 power law in the expression for D
makes the result rather insensitive to these types of dif-
ferences.

If one instead plots the diffusivity for the upper-layer
PV against b24/5 , the resulting fit is clearly not as3/5«d

good, as shown in Fig. 3b. It does appear to be appro-
priate, in this two-layer model, to associate the lower-
layer diffusivity of PV, and not the upper-layer diffu-
sivity, with the energy throughflow in this way.

Concerning the lower-layer diffusivity scaling, we ob-
serve some departure at both ends of the range of su-
percriticality. For small j, the diffusivity increases with
decreasing j despite the fact that energy decreases (not
shown). We relate this behavior to the effect of bottom
friction and frictional instability that seem to increase
the PV fluxes, as we find that a passive tracer advected
by the bottom layer has a smaller diffusivity than does
PV. For large j, the simulations present different be-
haviors: the 2562 simulations show that the diffusivity
is larger than its predicted value, whereas the opposite
is true for the 10242 case. The causes of this discrepancy
relate to Ekman friction and numerical resolution: in the
2562 case, we have seen that friction is inefficient in
arresting the inverse cascade, so that eddies feel the size
of the domain at large j and are more energetic. This
leads to a diffusivity larger than predicted. On the other
hand, in the 10242 case, bottom friction is quite efficient
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FIG. 3. (a) Nondimensional diffusivity D/Ul as a function of c« 3/5 b 24/5 /Ul. The crosses are the data from
HL varying b, whereas the circles are our 256 2 dataset varying l. The constant c was adjusted for each case
to give the best fit for the scaling (15); that is, c 5 1 for the crosses and c 5 1.44 for the plus symbols. The
solid line corresponds to the perfect fit. (b) Nondimensional diffusivity as a function of c« 3/5 b 24/5 /Ul for
the 1024 2 simulations. The stars correspond to the lower-layer diffusivity and the plus signs to the upper
layer; c equals 1.25 in this case.

in arresting the cascade and the eddies are less energetic;
the diffusivity is also smaller than predicted by focusing
on the effect of b alone.

A last question concerning relation (11) is how to
choose the appropriate constant c. This constant might
have some dependence on large-scale friction because
the cascade cannot be fully stopped by the b effect alone
[see discussion in Smith and Vallis (2002); Danilov and
Gurarie (2002)]. It may also depend on small-scale dis-
sipation if this dissipation is large enough to affect the
energy content of the eddies and the precise shape of
the energy spectra. Actually, the spectral shape of the
energy could be relevant for the constant c since the
eddy velocity V and the cascade rate « are precisely
linked through this shape: the universal form C k25/32/3«d

would lead to (5). Thus, the departure from this form
(due to b or the absence of inertial range) could affect
the constant c as is observed. However, we have not
been able to make a quantitative connection between
the two.

In the results described above, the two layers in the
model have equal mean thicknesses. We have also ex-
amined a two-layer model with layers of unequal thick-
nesses. The results are equally good: we still observe
relation (1) to be valid, using the lower-layer PV dif-
fusivity (not shown).

The question is how to proceed in a multilayer model,
or with a continuous stratification, within this horizon-
tally homogeneous framework. Is there a particular layer
in which the diffusivity for PV can be predicted with
the same scaling that works for the lower layer in the
two-layer model? Two hypotheses are suggested: use

the eddy steering level, or use the lowest model level.
As discussed above, eddies are known to be efficiently
mixed at the steering level where Rossby waves have
the same speed as the zonal flow [see Haynes et al.
(2001) for an illustration]. In this case, the PV diffu-
sivity at the steering level would intervene in (1). For
the continuously stratified case in which the source of
the instability is the surface temperature gradient, it may
be best to think of temperature at the surface as diffusing
according to (1). Indeed surface temperature in contin-
uously stratified baroclinic instability often plays a sim-
ilar role as does the lower-layer PV in the two-layer
model.

To begin testing this scaling in a more general setting,
we use the model of Held and O’Brien (1992), which
generalizes the present model to the case of three layers
of equal depth and is forced by a mean zonal wind shear
whose distribution is changed in each simulation. From
the data provided in Held and O’Brien (1992), the PV
diffusivity can be computed in each layer and compared
with prediction (1). The total generation of eddy energy
was used instead of the energy dissipation in this com-
putation. Figure 4 shows that (1) fits quite well for the
lower-layer diffusivity. This confirms that, in this case
as well, there exists a particular layer where we are best
able to equate D with the PV diffusivity. Only further
study can elucidate if it is an interior layer closest to
the typical steering level or the surface layer.

Even if we can predict the diffusivity of a particular
layer, one still needs the vertical distribution of the dif-
fusivity for a full theory of the eddy transport, even in
horizontally homogeneous models such as these (see
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FIG. 4. Potential vorticity diffusivities as a function of prediction
(11) using the three-layer model of Held and O’Brien (1992). The
PV diffusivities were shifted to separate each layer.

Tréguier et al. 1997; Smith and Vallis 2002). We can
hope to write

D(z) 5 g(z)D ,0 (12)

where g is the distribution of the diffusivity in the ver-
tical, g(z0) 5 1 for some z0 at which the scaling de-
scribed above works best, and D0 satisfies

24/5 3/5D 5 cb « .0 d

Because of zero total PV flux, one has the extra con-
straint

[y9q9] 5 D g(z)] Q(z) dz 5 0,0 E y

but it is only in the two-layer model that this constraint,
together with the expression above for the diffusivity
in a particular layer, fully determines the PV fluxes
[without using (12)].

3. Energy production

a. Relation between diffusivity and supercriticality

To close the theory in the two-layer model, one has
to find another relation between «d and D. The gener-
ation of eddy kinetic energy plus available potential
energy per unit mass can be written as

21
« 5 2 H U [y9q9] . (13)Op k k kH 1 H k511 2

This expression reduces to the two-layer version of (2)
in the horizontally homogeneous case (in which there
is no transfer of eddy kinetic to mean kinetic energy).
In a statistically steady state, the production of baro-

clinic energy, «p is exactly compensated by the dissi-
pation of baroclinic and barotropic energy by surface
friction and small-scale mixing. Given the insensitivity
of our tests of the relation (1) to the precise definition
of «d, we proceed by identifying «p with «d in (1). In
this picture, we assume that all the energy produced
baroclinically cascades barotropically to large scales.
Then we have

« ø « 5 U[y9q9] 5 UbD (j 2 1),d p 2 2 (14)

where U [ (U1 2 U2)/2 so that j 5 U/(bl2). This
results in the following expression for the diffusivity:

2 21 3/2 22 3 23 21 3/2D } Ulj (1 2 j ) 5 b U l (1 2 j ) , (15)2

which we can write in the form (4) if we set
21 21/2T [ (1 2 j ) l/U.

The identification of D with D2 has the immediate ad-
vantage that the resulting expression for D tends to zero
as j → 1. The expression of HL results by taking the
limit j → `.

In a comparison of homogeneous and channel qua-
sigeostrophic models, Pavan and Held (1996) fit the
lower-layer PV fluxes in the homogeneous model with
a diffusive closure and then use this diffusivity to obtain
good fits to numerical integrations for inhomogeneous
baroclinically unstable jets. The expression that they
obtained is precisely (15), although they were unaware
of the argument of the preceding paragraph.

Given the good agreement with (1) whether we use
«d or «p, and that (14) is exact for our two-layer model,
we might expect the Pavan and Held formula (15) to
work equally well. However, it is informative, in this
regard, to consider the implications of assuming a small
departure in the D–« scaling. More precisely, suppose
that, for fixed b,

3/51aD } « , (16)

where a is a small number. Using (11), we find

3/5 1 a
m mD } j (j 2 1) ; m 5 . (17)

2/5 2 a

Assuming a to be small, the scaling exponent is 3/2 1
25a/4. Thus, a small imprecision in a is amplified nearly
sixfold in the expression for D(j). The implication is that
it is much more demanding to obtain an accurate theory
for heat flux, or diffusivity, as a function of the mean
gradients than a theory for diffusivity as a function of «.

The numerical results are displayed in Fig. 5a for our
new simulations and for those tabulated in HL. For the
2562 simulations, the scaling works only marginally and
the differences between the various versions of the mod-
el are larger than in Fig. 3a, as anticipated from the
argument of the preceding paragraph. The 10242 sim-
ulations show a better fit with the scaling provided by
(15), especially if we discard the larger values of j for
which we know that the surface drag is stopping the
cascade before b can play its role. Additionally, the fit



2914 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 5. (a) Nondimensional diffusivity D2/Ul as a function of c5/2j 2(1 2 j21)3/2. The circles are our 2562 simulations,
the crosses are HL simulations, and the stars are the 10242 simulations. The solid line is the perfect fit. (b) Nondi-
mensional diffusivity D2/Ul as a function of c5/2j 2(1 2 j21)3/2 (stars) and c5/2j 2 (plus signs) for the 10242 simulations.
The value of c is the same as in Fig. 3.

is much better than the fit with the theory of HL that
uses only the large supercriticality limit of (15), as can
be seen in Fig. 5b. In light of the various reasons to
expect some discrepancies, we are encouraged by the
closeness of the fit, especially in the 10242 simulations.

Keeping in mind how one might generalize our results
to a vertically continuous model, one can start by con-
sidering a diffusivity of the form D(z) 5 g(z)D0, with
D0 determined as above at some level z0, where g(z0)
5 1. In a quasigeostrophic model with mean vertical
shear U(z), the energy production is set by the appro-
priate generalization to (13). One obtains

3/2
1

22D 5 b U(z)g(z)] Q(z) dz0 E y[ ]H

as a generalization of (15). We thus have a generalized
timescale

21/2
1

T 5 U(z)g(z)] Q(z) dz .E y[ ]H

The resulting timescale depends on how the vertical
shear projects on the meridional PV gradient. (If the rhs
of this expression is negative, the implication would be
that one cannot diffuse PV downgradient with this ver-
tical structure in the diffusivity and simultaneously gen-
erate eddy energy, so the diffusivity should be set to
zero.) Given the distribution of g(z), we can determine
D0 and, therefore, D at each level.

b. Energy production and entropy

Rather than using the generation of available potential
energy or the destruction of barotropic energy by large-
scale friction, Barry et al. (2002) estimate « by com-
puting the entropy destruction by the mean radiative

and boundary fluxes and assuming that a fixed fraction
h of this entropy destruction is balanced by the entropy
generated when kinetic energy is dissipated:

« Q
5 h . (18)[ ]T T0

Here, T0 is the average temperature at which kinetic
energy is dissipated, we interpret Q as the divergence
of the large-scale eddy flux of energy, and brackets de-
note a global mean. One then has approximately

dT
« } Q , (19)0 T0

where dT is a characteristic temperature difference be-
tween the heated and cooled regions and Q0 the mag-
nitude of the corresponding characteristic heating and
cooling rates.

There is a close relationship between estimates of
kinetic energy dissipation based on the entropy and
available potential energy balances. Indeed, Lorenz’s
original motivation for introducing the concept of avail-
able potential energy was to provide a more robust way
of estimating « from observations than that provided by
expressions along the lines of (18) (see Lorenz 1967).

In our simple Boussinesq two-layer model, there is no
distinction between entropy production and the genera-
tion of available potential energy. Consider a two-layer
flow forced by an imposed mass exchange between the
two layers, with lower-layer mass converted to upper-
layer mass in low latitudes to represent heating and an
equal amount of upper layer converted to lower layer in
high latitudes to represent cooling. The rate of generation
of available potential energy per unit mass of the fluid
by this process in the quasigeostrophic limit is
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g*
« 5 [Qh], (20)

2H0

where Q is the mass source per unit time in the lower
layer, h is the lower-layer depth, g* is the reduced grav-
ity, and H0 is the mean depth of either layer. This ex-
pression is analogous to (18) with h playing the role of
1/T. If there were significant thermal damping resulting
in the loss of available potential energy, an effect absent
in our model and ignored in our analysis above, this
would result in a reduction in ‘‘efficiency,’’ analogous
to the factor h in (18).

Assume for simplicity that eddy momentum fluxes
are negligible in the time mean. Then, in the quasigeo-
strophic approximation, there is no Eulerian mean me-
ridional flow and Q must be balanced by the eddy thick-
ness flux:

]
Q 5 y9h9. (21)

]y

Integrating (20) by parts one obtains

g* ]h
« 5 2 y9h9 . (22)[ ]2H ]y0

Using the thermal wind equation to relate g*]h/]y to
the mean vertical shear, and setting the eddy PV flux
equal to ( f /H0) , one recovers (14). The constrainty9q9
between « and D provided by the global mean entropy
or available potential energy budgets looks like it is
fundamentally nonlocal and inhomogeneous. But this
impression is created by the integration by parts. To the
extent that eddies are produced and dissipated at more
or less the same latitude, (22) or (13) can be satisfied
at each latitude, the homogeneous model should capture
the essence of the eddy maintenance, and we can think
of an approximate diffusivity that is a function of the
local environment.

4. Discussion and conclusions

The relation (1) between eddy diffusivity and energy
generation rate is potentially of considerable signifi-
cance for our understanding of atmospheric circulation,
as is implicit in Barry et al. (2002). We have tried to
clarify the role of this constraint in the theory of Held
and Larichev (1996). The latter is a closure theory for
the eddy buoyancy and PV fluxes in a horizontally ho-
mogeneous, baroclinically unstable, two-layer model.
We first verify that this expression is indeed satisfied
by numerical solutions to this homogeneous model in
the weakly unstable limit j , 5. A three-layer model
also confirms our findings. The reason why (1) works
reasonably well is that it is not very sensitive to the
exact shape of the barotropic energy spectrum: the scal-
ing works much better in our case than the k25/3 power-
law prediction. We cannot rule out the possibility that
there are other ways of motivating (1) without referring

to the inverse energy cascade at all. Our theory relies
only on the existence of an upscale cascade for the
barotropic energy associated with a significant part of
energy dissipation at large scales, and on the role played
by b in the inverse cascade.

The key ingredient in the closure of HL is the iden-
tification of the diffusivity in (1) with the diffusivity com-
puted from an appropriate flux in the homogeneous model
and the associated mean gradient. In the large supercrit-
icality limit considered in HL, the diffusivities for buoy-
ancy, upper-layer PV, and lower-layer PV are all equal,
so one does not have to choose among these, but the
resulting theory does not fit results for moderate super-
criticality very well. Here, we demonstrate that the simple
choice of identifying the diffusivity in (1) with the dif-
fusivity for lower-layer PV results in a good fit with
numerical simulations, especially the 10242 simulations.
In all cases, the fit is superior to the large supercriticality
limit of HL. The resulting theory has, in fact, already
been suggested by Pavan and Held (1996), based not on
a ‘‘derivation’’ of the kind described here, but rather on
a simple fit to numerical results.

We do not have a clear understanding of why selecting
lower-layer diffusivity for the theory is appropriate. One
possibility discussed above is that this theory is most
relevant for levels close to the typical steering level of
the dominant waves. An alternative heuristic viewpoint
is as follows. An aspect of the theory of HL, following
Rhines (1979) and Salmon (1980), is that a substantial
inverse energy cascade results in the energy-containing
eddies being dominated by the barotropic mode. How-
ever, if the supercriticality of the flow is not very large,
there is not enough of an inverse cascade to create a
fully barotropic flow. Instead, the eddy kinetic energy
tends to be concentrated in the upper layer, analogous
to the upper-tropospheric maximum in eddy kinetic en-
ergy observed in the atmosphere. As long as the hori-
zontal scales are comparable in the two layers, the eddy
potential enstrophy will also be larger in the upper than
in the lower layer. One can always think of the flow in
a two-layer quasigeostrophic model as the linear su-
perposition of a part induced by the upper-layer PV
distribution and a part induced by the lower-layer PV
distribution. If the ratio of potential enstrophy in the
upper to the lower layer is large enough, then the flow
in the lower layer can be predominantly induced by the
PV in the upper layer. As a consequence, the lower-
layer PV will behave like a passive tracer. In the upper
layer, the eddies are advected by a flow that they them-
selves induce to a great extent, so arguments based on
passive advection are less directly relevant. This upper-
/lower-layer asymmetry is ultimately due to the drag in
the bottom layer and the weaker PV gradient there.

The two-layer homogeneous model has the distinctive
feature that the upper-layer PV flux is known once the
lower-layer flux is known—they are simply equal in
magnitude and opposite in sign. Since the generation of
eddy energy is determined by the PV fluxes, one has
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another relation between «, the lower-layer PV diffu-
sivity and the mean PV gradients that one can couple
with (1) to determine the energy throughput and the
diffusivity separately. In a model with more than two
levels in the vertical, this argument is no longer closed,
as one needs a theory for the vertical distribution of the
PV flux. See Held and O’Brien (1992), Smith and Vallis
(2002), and Tréguier et al. (1997) for a discussion of
this issue, which we consider an unsolved problem.
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APPENDIX

Numerical Model

We have reexamined integrations similar to those in
HL, partly as a point of departure for the moist model
described in Lapeyre and Held (2003, unpublished man-
uscript). We take the standard horizontally homoge-
neous model on the b plane with a zonally symmetric
climate and layers of equal mean depths, as in HL. The
mean zonal velocity in each layer is U1 5 U and U2 5
2U where the subscripts 1 and 2 refer respectively to
the top and bottom layers of fluid. Each layer has equal
mean depth H1 5 H2 5 H. The supercriticality j [ (U1

2 U2)/(bl2) (where l is the radius of deformation) must
be larger than unity for instability.

We examined different sets of simulations, using both
2562 resolution as in HL, but also the higher resolution
of 10242. The current model uses an exponential filter
to dissipate small scales [see Smith et al. (2002) for a
description of the scheme], rather than the ¹8 damping
used in HL. This modifies the energetics of the system
as we now find typically that less than 3% of the energy
input rate «p is dissipated by small-scale diffusion, leav-
ing 97% to be destroyed by Ekman friction (the anal-
ogous figures were only 30% and 70% in HL). As a
consequence our 2562 and 10242 simulations are sub-
stantially more energetic than in HL, holding other pa-
rameters fixed. Additionally, we vary the supercriticality
j in our 2562 simulations by varying l, rather than b
as in HL, motivated by the desire to test if the depen-
dence of the dry model results on static stability can be
used to help understand our companion moist simula-
tions. The largest wavelength in the domain ranges from
20pl for the smaller supercriticality to 34pl for the
largest. This leaves more room for the direct cascade of
enstrophy compared to the simulations of HL where the
largest scale was chosen to be 100pl. For our 10242

simulations, we chose 100pl for the largest scale as in
HL, but we used a larger bottom friction r 5 0.32 Ul21

instead of r 5 0.16 Ul21 for the 2562 simulations here
and in HL. In summary, our new simulations are less
viscous than those in HL, and, in conjunction with HL,
provide some information on the robustness of the scal-
ing to the size of the domain and to the strength of
surface friction. The range of supercriticality j we use
in these different simulations is between 1.1 and 14 in
order to push the limits of the theory to the weakly
unstable limit.
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